Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(7): 257, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37303001

RESUMO

For the first time the use of nanoparticles as carriers of an enzymatic substrate immobilized inside nanoporous alumina membranes is proposed with the aim of amplifying the nanochannel blocking produced and, consequently, improving the efficiency of an enzyme determination through enzymatic cleavage. Streptavidin-modified polystyrene nanoparticles (PSNPs) are proposed as carrier agents, contributing to the steric and the electrostatic blockage due to the charge they present at different pH values. Electrostatic blockage is the predominant effect that governs the blockage in the interior of the nanochannel and is dependent not just in the charge inside the channel, but also in the polarity of the redox indicator used. Hence, the effect of using negatively charged ([Fe(CN)6]4-) and positively charged ([Ru(NH3)6]3+) redox indicator ions is studied for the first time. Under the optimum conditions, matrix-metalloproteinase 9 (MMP-9) is detected at clinically relevant levels (100-1200 ng/mL) showing a detection limit of 75 ng/mL and a quantification limit of 251 ng/mL with good reproducibility (RSD: 8%) and selectivity, also showing an excellent performance in real samples with acceptable recovery percentages (in the range around 80-110%). Overall, our approach represents a cheap and fast sensing methodology of great potential in point-of-care diagnostics.


Assuntos
Metaloproteinase 9 da Matriz , Nanopartículas , Reprodutibilidade dos Testes , Óxido de Alumínio , Biomarcadores
2.
Talanta ; 260: 124614, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163926

RESUMO

A novel immunosensor based on electrochemiluminescence resonance energy transfer (ECL-RET) for the sensitive determination of N protein of the SARS-CoV-2 coronavirus is described. For this purpose, bifunctional core@shell nanoparticles composed of a Pt-coated Au core and finally decorated with small Au inlays (Au@Pt/Au NPs) have been synthesized to act as ECL acceptor, using [Ru (bpy)3]2+ as ECL donor. These nanoparticles are efficient signaling probes in the immunosensor developed. The proposed ECL-RET immunosensor has a wide linear response to the concentration of N protein of the SARS-CoV-2 coronavirus with a detection limit of 1.27 pg/mL. Moreover, it has a high stability and shows no response to other proteins related to different virus. The immunosensor has achieved the quantification of N protein of the SARS-CoV-2 coronavirus in saliva samples. Results are consistent with those provided by a commercial colorimetric ELISA kit. Therefore, the developed immunosensor provides a feasible and reliable tool for early and effective detection of the virus to protect the population.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Humanos , Ouro , SARS-CoV-2 , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , COVID-19/diagnóstico , Técnicas Eletroquímicas/métodos , Limite de Detecção
3.
Anal Bioanal Chem ; 415(6): 1107-1121, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36445455

RESUMO

The abusive use of antimicrobial compounds and the associated appearance of antimicrobial resistant strains are a major threat to human health. An improved antimicrobial administration involves a faster diagnosis and detection of resistances. Antimicrobial susceptibility testing (AST) are the reference techniques for this purpose, relying mainly in the use of culture techniques. The long time required for analysis and the lack of reproducibility of these techniques have fostered the development of high-throughput AST methods, including electrochemical biosensors. In this review, recent electrochemical methods used in AST have been revised, with particular attention on those used for the evaluation of new drug candidates. The role of nanomaterials in these biosensing platforms has also been questioned, inferring that it is of minor importance compared to other applications.


Assuntos
Anti-Infecciosos , Técnicas Biossensoriais , Nanoestruturas , Humanos , Reprodutibilidade dos Testes , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Anti-Infecciosos/farmacologia
4.
Biosens Bioelectron ; 209: 114243, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35421671

RESUMO

Chronic wounds represent an important healthcare challenge in developed countries, being wound infection a serious complication with significant impact on patients' life conditions. However, there is a lack of methods allowing an early diagnosis of infection and a right decision making for a correct treatment. In this context, we propose a novel methodology for the electrical monitoring of infection biomarkers in chronic wound exudates, using nanoporous alumina membranes. Lysozyme, an enzyme produced by the human immune system indicating wound infection, is selected as a model compound to prove the concept. Peptidoglycan, a component of the bacterial layer and the native substrate of lysozyme, is immobilized on the inner walls of the nanochannels, blocking them both sterically and electrostatically. The steric blocking is dependent on the pore size (20-100 nm) and the peptidoglycan concentration, whereas the electrostatic blocking depends on the pH. The proposed analytical method is based on the electrical monitoring of the steric/electrostatic nanochannels unblocking upon the specific degradation of peptidoglycan by lysozyme, allowing to detect the infection biomarker at 280 ng/mL levels, which are below those expected in wounds. The low protein adsorption rate and thus outstanding filtering properties of the nanoporous alumina membranes allowed us to discriminate wound exudates from patients with both sterile and infected ulcers without any sample pre-treatment usually indispensable in most diagnostic devices for analysis of physiological fluids. Although size and charge effects in nanochannels have been previously approached for biosensing purposes, as far as we know, the use of nanoporous membranes for monitoring enzymatic cleavage processes, leading to analytical systems for the specific detection of the enzymes has not been deeply explored so far. Compared with previously reported methods, our methodology presents the advantages of no need of neither bioreceptors (antibodies or aptamers) nor competitive assays, low matrix effects and quantitative and rapid analysis at the point-of-care, being also of potential application for the determination of other protease biomarkers.


Assuntos
Técnicas Biossensoriais , Infecção dos Ferimentos , Óxido de Alumínio/química , Biomarcadores , Técnicas Biossensoriais/métodos , Humanos , Muramidase , Peptidoglicano , Infecção dos Ferimentos/diagnóstico
5.
Biosens Bioelectron ; 200: 113926, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34990956

RESUMO

In this work, an unprecedented study exploring the role that slight changes into the Pd/Au proportion have in the electrocatalytic activity of bimetallic Pd-AuNPs toward the oxygen reduction reaction (ORR) is conducted. In particular, a careful control of the amount of Au atoms introduced in the cluster and the evaluation of the optimum Pd:Au ratio for getting the maximum catalytic activity is performed for the first time. First, PdNPs are synthesized by alcohol reduction in the presence of polyvinylpyrrolidone, and gold atoms are selectively introduced on vertex or corner positions of the cluster in different amounts following a galvanic substitution procedure. Average elemental analysis done relying on EDX spectroscopy allows to evaluate the Pd:Au ratio in the Pd-AuNPs obtained. Lineal sweep voltammetry and chronoamperometry are used for the evaluation of the Pd-AuNPs electrocatalytic activity toward ORR at a neutral pH compared to PdNPs and AuNPs alone. Our results indicate that, the synergy between both metals is strongly enhanced when the amount of gold is controlled and occupies the more reactive positions of the cluster, reaching a maximum activity for the NPs containing a 30% of gold, while an excess of this metal leads to a decrease in such activity, as a shelter of the PdNPs is achieved. Chronoamperometric analysis allows the quantification of the optimal Pd-AuNPs at over 6 × 109 NPs/mL levels. Such optimal Pd-AuNPs were used as tags, taking advantage of the bio-functionalities of gold present in the cluster, in a proof-of-concept electrochemical immunosensor for the detection of hyaluronidase wound infection biomarker, using magnetic beads as platforms. Hyaluronidase was detected at levels as low as 50 ng/mL (0.02 U/mL; 437 U/mg) with good reproducibility (RSD below 8%) and selectivity (evaluated against bovine serum albumin, immunoglobulin G and lysozyme). The low matrix effects inherent to the use of magnetic bead platforms allowed us to discriminate between wound exudates with both sterile and infected ulcers without sample pre-treatment. This novel electrocatalytic immunoassay has the advantage, over common methods for NP tags electrochemical detection, of the signal generation in the same neutral medium where the immunoassay takes place (10 mM PBS pH 7.4), avoiding the use of additional and hazardous reagents, bringing it closer to their use as point-of-care devices. Overall, our findings may be of great interest not only for biosensing, but also for applications such as energy converting on fuel cells, in which the ORR has a pivotal role.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Infecção dos Ferimentos , Biomarcadores , Técnicas Eletroquímicas , Ouro , Humanos , Imunoensaio , Limite de Detecção , Paládio , Reprodutibilidade dos Testes
6.
Curr Alzheimer Res ; 18(9): 695-700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34789127

RESUMO

AIMS: There are several candidate biomarkers for AD and PD which differ in sensitivity, specificity, cost-effectiveness, invasiveness, logistical and technical demands. This study is aimed to test whether plasma concentration of unfolded p53 may help to discriminate among the neurodegenerative processes occurring in Mild Cognitive Impairment, Alzheimer's disease and Parkinson's disease. METHODS: An electrochemical immunosensor was used to measure unfolded p53 in plasma samples of 20 Mild Cognitive Impairment (13 males/7 females; mean age 74.95±5.31), 20 Alzheimer's (11 males/9 females; mean age: 77.25±7.79), 15 Parkinson's disease patients (12 males/3 females; mean age: 68.60 ± 7.36) and its respective age/sex/studies-matched controls. RESULTS: We observed a significantly higher concentration of unfolded p53 in the plasma of patients of each of the three pathologies with respect to their control groups (p=0.000). Furthermore, the plasma concentration of unfolded p53 was significantly higher in Alzheimer's disease patients in comparison with Mild Cognitive Impairment patients (p=0.000) and Parkinson's disease patients (p=0.006). No significant difference between Mild Cognitive Impairment and Parkinson's disease patients was observed (p=0.524). CONCLUSION: Our results suggest that unfolded p53 concentration in the plasma may be a useful biomarker for an undergoing neuropathological process that may be common, albeit with different intensity, to different diseases.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Estresse Oxidativo , Doença de Parkinson , Proteína Supressora de Tumor p53/sangue , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/sangue , Biomarcadores/sangue , Técnicas Biossensoriais , Disfunção Cognitiva/sangue , Feminino , Humanos , Imunoensaio , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/sangue
7.
Sensors (Basel) ; 20(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842632

RESUMO

Alzheimer's disease (AD) is an untreatable neurodegenerative disease that initially manifests as difficulty to remember recent events and gradually progresses to cognitive impairment. The incidence of AD is growing yearly as life expectancy increases, thus early detection is essential to ensure a better quality of life for diagnosed patients. To reach that purpose, electrochemical biosensing has emerged as a cost-effective alternative to traditional diagnostic techniques, due to its high sensitivity and selectivity. Of special relevance is the incorporation of nanomaterials in biosensors, as they contribute to enhance electron transfer while promoting the immobilization of biological recognition elements. Moreover, nanomaterials have also been employed as labels, due to their unique electroactive and electrocatalytic properties. The aim of this review is to add value in the advances achieved in the detection of AD biomarkers, the strategies followed for the incorporation of nanomaterials and its effect in biosensors performance.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Técnicas Eletroquímicas , Nanoestruturas , Doença de Alzheimer/diagnóstico , Humanos , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...